

NOVA
University of Newcastle Research Online

nova.newcastle.edu.au

© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

Accessed from: http://hdl.handle.net/1959.13/1332466

Kalinowski, Thomas; Matsypura, Dmytro; Savelsbergh, Martin W. P.; 'Incremental
network design with maximum flows’. Published in European Journal of Operational
Research Vol. 242, Issue 1, p. 51-62 (2015)

Available from: http://dx.doi.org/10.1016/j.ejor.2014.10.003

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://hdl.handle.net/1959.13/1332466
http://dx.doi.org/10.1016/j.ejor.2014.10.003

Incremental Network Design with Maximum Flows

Thomas Kalinowski† Dmytro Matsypura?

Martin W.P. Savelsbergh†

†University of Newcastle, Australia ?University of Sydney, Australia

November 13, 2018

Abstract

We study an incremental network design problem, where in each time period of the planning horizon
an arc can be added to the network and a maximum flow problem is solved, and where the objective is
to maximize the cumulative flow over the entire planning horizon. After presenting two mixed integer
programming (MIP) formulations for this NP-complete problem, we describe several heuristics and prove
performance bounds for some special cases. In a series of computational experiments, we compare the
performance of the MIP formulations as well as the heuristics.

1 Introduction

In the planning process for many network infrastructures, when the network is constructed over a significant
period of time, the properties of the intermediate partial networks have to be taken into account. Incremental
network design, introduced in [1], represents a class of optimization problems capturing that feature and
combining two types of decisions: which arcs should be added to a given network in order to achieve a
certain goal, and when should these arcs be added?

Variants of this problem have been studied in diverse contexts, for instance, the design of transportation
networks [4, 11], network infrastructure restoration after disruptions due to natural disasters [2, 5, 6], and
the transformation of an electrical power grid into a smart grid [7, 8].

A general class of mathematical optimization problems that captures essential features of the described
decision problems, and includes the problem discussed in this paper as a special case, was introduced in [9, 10],
where an integrated network design and scheduling problem is specified by (1) a scheduling environment that
describes the available resources for adding arcs to the network, (2) a performance measure, which prescribes
how a given network is evaluated (for instance by the shortest s-t path or by the maximum s-t flow in the
network), and (3) by the optimization goal, which is either to reach a certain level of performance as quickly
as possible or to optimize the cumulative performance over the entire planning horizon.

We focus on the special case corresponding to incremental network design as introduced in [1]. Our
scheduling environment is such that at most one arc can be added to the network in each time period, and
we optimize the cumulative performance, i.e., the sum of the performance measures of the networks in all
time periods. Even in this simple setting, the problem has been shown to be NP-complete for classical
network optimization problems: for the shortest s-t path problem in [1], and for the maximum s-t flow
problem in [10]. Interestingly, the incremental variant of the minimum spanning tree problem can be solved
efficiently by a greedy algorithm [3], while it becomes NP-complete in the more general setup of [10]. The
performance measure considered in this paper is the value of a maximum s-t flow.

In Section 2, we introduce notation, state the problem precisely, and present two MIP formulations. In
Section 3, we describe three heuristics, the first one seeks to increment the flow as quickly as possible, the
second seeks to reach a maximum flow as quickly as possible, and the third one is a hybrid of the first two.
In Section 4, we prove performance guarantees for the first two heuristics in special cases: for unit capacity
networks they provide a 2-approximation algorithm and a 3/2-approximation algorithm, respectively, and
these bounds can be strengthened when the network has a special structure. Section 5 discusses the results of

1

ar
X

iv
:1

31
2.

64
47

v2
 [

cs
.D

M
]

 2
1

Ju
n

20
14

a set of computational experiments using randomly generated instances. After describing the instance gen-
eration, we compare the performance of the two MIP formulations, and evaluate and compare the heuristics
on hard instances. We end, in Section 6, with some final remarks.

2 Problem formulation

We are given a network D = (N,A) with node set N and arc set A = Ae ∪ Ap, where Ae contains existing
arcs and Ap contains potential arcs, as well as a source s ∈ N and sink t ∈ N . For each arc, we are given an
integer capacity ua > 0, and for every node v ∈ N , we denote with δin(v) and δout(v) the set of arcs entering
v and the set of arcs leaving v, respectively. Let T > |Ap| be the length of the planning horizon. In every
period, we have the option to expand the useable network, which initially consists of only the existing arcs,
by “building” a single potential arc a ∈ Ap, which will be available for use in the following time period. In
every period, the value of a maximum s-t flow is recorded (using only useable arcs, i.e., existing arcs and
potential arcs that have been built in previous periods). The objective is to maximize the total flow over the
planning horizon. Note that the length of the planning horizon ensures that every potential arc can be built.
We refer to a maximum s-t flow using only existing arcs as an initial maximum flow, and to a maximum
flow for the complete network as an ultimate maximum flow. This problem is strongly NP-hard [10] even
when restricted to instances where every existing arc has capacity 1 and every potential arc has capacity 3.
(A simple proof of this result can be found in the appendix.)

The problem can be formulated as a mixed integer program. For every a ∈ A and k ∈ {1, . . . , T}, we
have a flow variable xak > 0, and for every a ∈ Ap and k ∈ {1, . . . , T}, we have a binary variable yak which
indicates if arc a is built before period k (yak = 1) or not (yak = 0). The incremental maximum flow problem
is then

max

T∑
k=1

 ∑
a∈δout(s)

xak −
∑

a∈δin(s)

xak

subject to ∑

a∈δout(v)

xak −
∑

a∈δin(v)

xak = 0 for v ∈ N \ {s, t}, k ∈ {1, . . . , T},

xak 6 ua for a ∈ Ae, k ∈ {1, . . . , T},
xak 6 uayak for a ∈ Ap, k ∈ {1, . . . , T},
yak > ya,k−1 for a ∈ Ap, k ∈ {2, . . . , T},
ya1 = 0 for a ∈ Ap,∑

a∈Ap

(yak − ya,k−1) 6 1 for k ∈ {2, . . . , T − 1},

xak > 0 for a ∈ A, k ∈ {1, . . . , T},
yak ∈ {0, 1} for a ∈ Ap, k ∈ {1, . . . , T}.

We denote this formulation by IMFP1.
A potential weakness of IMFP1 is that it may suffer from symmetry. If multiple arcs need to be build

to increase the maximum s-t flow, then the order in which these arcs are build does not matter, which
introduces alternative, symmetrical solutions. Next, we present an alternative MIP formulation which avoids
this difficulty. Let f and F denote the initial and the ultimate maximum flow value, respectively, and let
r = F − f . We introduce binary variables yak for a ∈ Ap and k = 1, 2, . . . , r with the interpretation

yak =

{
1 if arc a is build while the max flow value is less than f + k,

0 otherwise.

The number of time periods with maximum flow value f is
∑
a∈Ap

ya1, and for k = 1, . . . , r− 1, the number

2

of time periods with maximum flow value f + k is
∑
a∈Ap

(ya,k+1 − yak). Consequently, the total flow is

f
∑
a∈Ap

ya1 +

r−1∑
k=1

(f + k)
∑
a∈Ap

(ya,k+1 − yak) + F

T − ∑
a∈Ap

yar

= TF +

∑
a∈Ap

r∑
k=1

yak [(f + k − 1)− (f + k)] = TF −
∑
a∈Ap

r∑
k=1

yak.

Hence the incremental maximum flow problem can also be formulated as follows

min
∑
a∈Ap

r∑
k=1

yak

subject to

∑
a∈δout(v)

xak −
∑

a∈δin(v)

xak =

0 for v 6∈ {s, t}
f + k for v = s

−f − k for v = t

for v ∈ N, k ∈ {1, . . . , r},

xak 6 ua for a ∈ Ae, k ∈ {1, . . . , r},
xak 6 uayak for a ∈ Ap, k ∈ {1, . . . , r},
yak 6 ya,k+1 for a ∈ Ap, k ∈ {1, . . . , r − 1},
xak > 0 for a ∈ A, k ∈ {1, . . . , r},
yak ∈ {0, 1} for a ∈ Ap, k ∈ {1, . . . , r}.

We denote this formulation by IMFP2.
Observe that the size of IMFP1 strongly depends on the length of the planning horizon, whereas the size

of IMFP2 strongly depends on the difference between the initial and ultimate maximum flow values.

3 Heuristics

In this section, we introduce two natural strategies for trying to obtain high quality solutions: (1) getting a
flow increment as quickly as possible, and (2) reaching a maximum possible flow as quickly as possible, as
well as a hybrid strategy.

3.1 Quickest flow increment

A natural greedy strategy is to build the arcs such that a flow increment is always reached as quickly as
possible. Suppose we have already built the arcs in B ⊆ Ap to reach a maximum flow value f + k. A
smallest set of potential arcs to be built, in addition to B, to reach a flow of value at least f + k + 1 can
be determined by solving a fixed charge network flow problem: find a flow of value f + k + 1 where arcs
in Ae ∪ B have zero cost, and arcs in Ap \ B incur a cost of 1 if they carry a nonzero flow. More formally,
in order to determine the smallest number of potential arcs that have to be built to increase the flow from

3

f + k to at least f + k + 1, we solve the problem MinArcs(B, k + 1):

min z =
∑

a∈Ap\B

ya

subject to
∑

a∈δout(v)

xa −
∑

a∈δin(v)

xa =

0 for v 6∈ {s, t}
f + k + 1 for v = s

−f − k − 1 for v = t

for v ∈ N,

xa 6 ua for a ∈ Ae ∪B,
xa 6 uaya for a ∈ Ap \B,
xa > 0 for a ∈ A,
ya ∈ {0, 1} for a ∈ Ap \B.

Next, among all the possibilities that increase the flow by building the smallest possible number of potential
arcs, we want to choose one that maximizes the flow increase. Given the optimal value z∗ for the problem
MinArcs(B, k + 1), this can be achieved by solving another MIP, denoted by MaxVal(B, z∗):

max ξ

subject to
∑

a∈δout(v)

xa −
∑

a∈δin(v)

xa =

0 for v 6∈ {s, t}
ξ for v = s

−ξ for v = t

for v ∈ N,

xa 6 ua for a ∈ Ae ∪B, ,
xa 6 uaya for a ∈ Ap \B,∑

a∈Ap\B

ya = z∗

xa > 0 for a ∈ A,
ya ∈ {0, 1} for a ∈ Ap \B.

The greedy heuristic is described formally in Algorithm 1 (assuming the entire set Ap is provided as input).
In general, this heuristic still requires the solution of MIPs MinArcs(B, k + 1) and MaxVal(B, z∗), hence

Algorithm 1: Quickest-increment

input : Ap ⊂ Ap
D ← (V,A) with A = Ae ∪Ap ;
B ← ∅ { initialize the set of built arcs } ;
k ← 0 { index of initial flow value } ;
while k < F − f do

z∗ ← optimal value of MinArcs(B, k + 1) ;
(x, y)← optimal solution for MaxVal(B, z∗) ;
{ add potential arcs to be built to reach a flow of at least f + k + 1 } ;

B ← B ∪ {a ∈ Ap : ya = 1} ;
k ← (maximum flow value using only arcs in Ae ∪B) −f ;

we do not get a polynomial bound on the runtime. But these MIPs are much smaller than IMFP1 and
IMFP2, so we might expect that they can be solved more efficiently.

However, if the capacities of all potential arcs are equal to 1, then the problems MinArcs(B, k + 1)
reduce to minimum cost flow problems, and their solutions are already optimal for MaxVal(B, z∗), because
the optimal flow increment is 1. Thus for these instances, the quickest increment heuristic runs in polynomial
time.

4

Furthermore, if the maximization of the flow increment is omitted, then the heuristic can be implemented
to run in polynomial time even for general capacities. For this purpose, suppose we have already built the
arcs in B ⊂ Ap and we have a maximum flow x of value f + k for the network (V,Ae ∪ B). Using the
residual network with respect to x, we can apply a labeling procedure which computes for each node v a
triple (d(v), δ(v), p(v)), where

• d(v) is the minimum number of arcs in Ap \B on any augmenting s-v-path,

• δ(v) is the maximum augmentation for any s-v-path using at most d(v) arcs from Ap \B, and

• p(v) is the predecessor of v on an s-v-path which contains d(v) arcs from Ap \B and can be augmented
by δ(v) units of flow.

This can be done in time O(|A|), for instance using BFS starting from s, and the distance label d(t) equals
the minimum size of a set B′ ⊆ Ap \ B with the property that the maximum s-t-flow value in the network
(V,Ae ∪ B ∪ B′) is strictly larger than f + k. Furthermore, B′ = P ∩ (Ap \ B) is such a set of size d(t),
where P is the augmenting s-t-path corresponding to the result of the labeling procedure. Suppose there
is a set B′′ ⊆ Ap \ B with |B′′| < d(t) such that the maximum flow in (V,Ae ∪ B ∪ B′′) is strictly larger
than f + k. Then the residual network for (V,Ae ∪ B ∪ B′′) with respect to the flow x of value FB must
contain an augmenting path P ′. Now P ′∩ (AP \B) ⊆ B′′, thus P ′ is an augmenting s-t-path which contains
less than d(t) arcs from Ap \B, which contradicts the construction of d(t). Using this labeling procedure, a
quickest-increment heuristic can be described as follows.

• Initialize the set of built arcs B = ∅ and a zero flow x = 0

• while x is not a maximum flow for (V,A) do

– Find an augmenting path P using the smallest number of new potential arcs.

– Add the potential arcs on P to B.

– Update the flow x.

This algorithm runs in time O(|V ||A|3). The δ-component in our node labels ensures that we find the
augmenting path that (1) requires the smallest number of new arcs to be built, and (2) allows the maximum
augmentation among these paths. Nevertheless, it might be beneficial to build another path which allows
more augmentations afterwards without building additional arcs. This is illustrated in Figure 1.

s t

2

2

3

4

4

4

4

Figure 1: An example where the polynomial variant of Quickest-increment builds the “wrong” arc. Every
augmenting path requires one potential arc. Our algorithm chooses the lower arc because it allows the
augmentation of 3 units of flow. But it would be better to build the upper arc first, and Algorithm 1 does
the right thing.

Since Algorithm 1, which solves subproblems MinArcs(B, k+1) and MaxVal(B, z∗), when implemented
using state-of-the-art commercial MIP solver, turned out to be sufficiently efficient for our test instances,
we decided not to implement the polynomial variant for our computational study, which is presented in
Section 5.

5

3.2 Quickest ultimate flow

A potential drawback of the quickest increment heuristic is that it might build arcs which yield (small) flow
increments but that are not used in an ultimate maximum flow. To force the heuristic to build arcs that
are used in an ultimate maximum flow, we can first determine a smallest set of potential arcs that admit
an ultimate maximum flow by finding an optimal solution (x∗, y∗) to the problem MinArcs(∅, r), and then
restricting the arc choices in Algorithm 1 to the arcs used in the optimal solution (x∗, y∗), i.e., by fixing
ya = 0 for all a ∈ Ap with y∗a = 0. This algorithm is described formally in Algorithm 2. Because the

Algorithm 2: Quickest-to-ultimate

input : r
(x∗, y∗)← optimal solution for MinArcs(∅, r) ;

Ap ← {a : y∗a = 1} ;

(x̃, ỹ)← solution obtained by Quickest-increment with input Ap ;

smallest set of potential arcs that admits an ultimate maximum flow is unlikely to be unique, it is possible
that the initial choice of arcs may not be the best.

3.3 Quickest target flow

Combining the ideas of quickest flow increment and quickest ultimate flow, we can design a general framework.
Let 0 = r0 < r1 < r2 < · · · < rk = r be a sequence of target values. Put B0 = ∅, and for i > 1 suppose that
we have already determined a set Bi−1 ⊆ Ap such that the maximum flow value for Ae ∪ Bi−1 is f + ri−1.
Following the quickest ultimate flow strategy, we can determine a smallest set of potential arcs Bi with
Bi−1 ⊆ Bi ⊆ Ap such that Ae ∪ Bi allows a flow of value f + ri, and then we can use the quickest flow
increment strategy to specify the order in which the arcs in Bi \ Bi−1 are built. This is described in detail
in Algorithm 3. Note that this framework implicitly also provides a risk mitigation strategy, because we

Algorithm 3: Quickest-to-target

input : 0 = r0 < r1 < r2 < · · · < rk = r
B0 ← ∅ ;

Ap ← ∅ ;
for i = 1, . . . , p do

z∗ ← optimal objective value for MinArcs(Bi−1, ri) ;
(x∗, y∗)← optimal solution for MaxVal(Bi−1, z

∗) ;
Bi ← {a : y∗a = 1} ;

Ap ← Ap ∪Bi ;

(x̃, ỹ)← solution obtained by Quickest-increment with input Ap ;

are not locked in to a set of arcs for the entire planning period, as in Quickest-to-ultimate.

4 The unit capacity case

As mentioned in the introduction, the incremental network design problem with maximum flows is strongly
NP-hard even when restricted to instances where every existing arc has capacity 1 and every potential arc
has capacity 3. That leaves open the possibility that when all arcs have capacity 1, i.e., both existing
and potential arcs, the problem is polynomially solvable. Unfortunately, we have been unable to settle the
complexity status of the unit-capacity case, but we have been able to derive a number of results regarding the
performance of Quickest-increment and Quickest-to-ultimate in the unit-capacity case, which are presented
in this section.

Figures 2 and 3 illustrate that the heuristics can be off by a factor of close to 2 (Quickest-to-ultimate) and
3/2 (Quickest-increment). The dashed arcs represent paths of potential arcs whose lengths are indicated by

6

s t

k

1

k

Figure 2: Bad instance for Quickest-to-ultimate.

s t

k

k − 1

k

Figure 3: Bad instance for Quickest-increment.

the arc labels. For the instance in Figure 2, the time horizon is T = 2k + 2 and the optimal solution (which
is found by Quickest-increment) has value 2k + 2, while Quickest-to-ultimate provides a solution of value
k · 0 + k · 1 + 2 · 2 = k+ 4. For the instance in Figure 3, the time horizon is T = 3k and the optimal solution
(which is found by Quickest-to-ultimate) has value 3k, while Quickest-increment provides a solution of value
(k − 1) · 0 + 2k · 1 + 2 = 2k + 2. Combining the two examples we get an instance that fools both heuristics
(Figure 4). For this instance, Quickest-to-ultimate achieves a total flow of 10k + 4, Quickest-increment gets
11k + 3, but a combination of the two strategies yields a total flow of 13k.

s t

k

k − 1

k

k

1

k

Figure 4: An instance where both Quickest-to-ultimate and Quickest-increment fail.

4.1 Upper bounds

In this subsection, we show that the instances in Figures 2 and 3 represent the worst situations for the
heuristics Quickest-to-ultimate and Quickest-increment, respectively. Let z∗, z1 and z2 denote the optimal
objective value, and the values obtained by Quickest-to-ultimate and Quickest-increment, respectively. For
i = 0, . . . , r − 1, let λi and µi denote the number of time periods with a maximum flow value f + i in the
solution from Quickest-to-ultimate and Quickest-increment, respectively. In other words, λi and µi are the
optimal values of the problems MinArcs(B, i + 1) which are solved for increasing the flow from f + i to
f + i+ 1. Furthermore, let cj for 0 6 j 6 r be the minimum number of potential arcs that have to be built

7

in order to reach a flow of f + j:

cj = min{
∑
a∈Ap

xa :
∑

a∈δout(v)

xa −
∑

a∈δinv)

xa =

0 for v ∈ V \ {s, t},
f + j for v = s,

−f − j for v = t,

0 6 xa 6 1 for all a ∈ A} (1)

= max{(f + j)(πs − πt) +
∑
a∈A

ya : πv − πw + ya 6

{
1 for a = (v, w) ∈ Ap,
0 for a = (v, w) ∈ Ae,

ya 6 0 for all a ∈ A}. (2)

Observe that if the associated sets of arcs would be nested, then they would give rise to an optimal solution.
However, since this is unlikely to be the case in general, the values cj can only be used to derive an upper
bound.

Lemma 1. z∗ 6 TF −
r∑
j=1

cj 6 TF − 1

2
r(r − 1)− cr.

Proof. For i = 0, . . . , r − 1, let λ∗i be the number of time periods with flow f + i in an optimal solution.
Since any feasible solution must have at least ci+1 periods with flow value at most f + i, we have

λ∗0 + · · ·+ λ∗i > ci+1.

Summing over i, we obtain
r−1∑
i=0

λ∗i (r − i) >
r∑
j=1

cj ,

hence

z∗ =

r−1∑
i=0

λ∗i (f + i) +

(
T −

r−1∑
i=0

λ∗i

)
(f + r) = TF −

r−1∑
i=0

λ∗i [(f + r)− (f + i)]

= TF −
r−1∑
i=0

λ∗i (r − i) 6 TF −
r∑
j=1

cj .

This proves the first inequality and the second one follows with cj > j for 1 6 j 6 r.

The values z1 and z2 can be expressed in terms of the sequences (λi) and (µi), respectively.

Lemma 2. z1 = TF −
r−1∑
i=0

λi(r − i) and z2 = TF −
r−1∑
i=0

µi(r − i).

Proof. We have

z1 =

r−1∑
i=0

λi(f + i) +

(
T −

r−1∑
i=0

λi

)
(f + r) = TF −

r−1∑
i=0

λi(r − i),

and similarly for z2.

The sequences (λi)i=0,...,r−1 and (µi)i=0,...,r−1 are non-decreasing.

Lemma 3. We have λ0 6 λ1 6 · · · 6 λr−1 and µ0 6 µ1 6 · · · 6 µr−1.

8

Proof. Let A = Ae ∪ Ap be the set of arcs that are used by Quickest-to-ultimate. Set B0 = ∅, and for
i = 1, . . . , r − 1 let Bi be the set of arcs which are built by Quickest-to-ultimate in the first λ0 + · · ·+ λi−1

time periods. Then

λi = min{
∑

a∈Ap\Bi

xa :
∑

a∈δout(v)

xa −
∑

a∈δin(v)

xa =

0 for v ∈ V \ {s, t},
f + i+ 1 for v = s,

−f − i− 1 for v = t,

0 6 xa 6 1 for all a ∈ A}

= max{(f + i+ 1)(πs − πt) +
∑
a∈A

ya : πv − πw + ya 6

{
1 for a = (v, w) ∈ Ap \Bi,
0 for a = (v, w) ∈ Ae ∪Bi,

ya 6 0 for all a ∈ A}.
Fix some i < r− 1, and let (π∗, y∗) be an optimal solution for the dual characterization of λi. Since Ae ∪Bi
can carry an s-t-flow of value f + i, the optimal value for the optimization problem which characterizes λi
becomes 0 when the flow value f + i + 1 is replaced by f + i. In the dual problem this is corresponds to
the coefficient of (πs − πt) in the objective function, and since (π∗, y∗) is also feasible for this modified dual
problem, we have

(f + i)(π∗s − π∗t) +
∑
a∈A

ya 6 0,

and therefore
λi = (f + i+ 1)(π∗s − π∗t) +

∑
a∈A

y∗a 6 π∗s − π∗t .

On the other hand, we obtain a feasible solution (π′, y′) for the dual characterization of λi+1 by setting
π′ = π∗ and

y′a =

{
y∗a − 1 for a ∈ Bi+1 \Bi,
y∗a for a ∈ A \ (Bi+1 \Bi),

and together with |Bi+1 \Bi| = λi this implies

λi+1 > (f + i+ 2)(π∗s − π∗t) +
∑
a∈A

y∗a − λi = π∗s − π∗t .

The inequality µi 6 µi+1 is proved in the same way (with A instead of A).

Theorem 1. Quickest-to-ultimate is a 2-approximation algorithm for the incremental maximum flow problem
with unit capacities, i.e., z∗ 6 2z1.

Proof. Using Lemma 3, we have

r−1∑
i=0

λi(r − 1− 2i) =

b(r−1)/2c∑
i=0

(λi − λr−1−i)(r − 1− 2i) 6 0.

Adding the inequality (λ0 + · · ·+ λr−1)r 6 TF , it follows that

TF −
r−1∑
i=0

λi(2(r − i)− 1) > 0.

By construction, cr = λ0 + · · ·+ λr−1, and with Lemma 1 we derive

z∗ 6 TF − 1

2
r(r − 1)−

r−1∑
i=0

λi 6 TF − 1

2
r(r − 1)−

r−1∑
i=0

λi +

(
TF −

r−1∑
i=0

λi(2(r − i)− 1)

)

= 2

(
TF −

r−1∑
i=0

λi(r − i)
)
− 1

2
r(r − 1) = 2z1 −

1

2
r(r − 1).

9

In order to prove that for Quickest-increment the case in Figure 3 illustrates an upper bound for the
approximation ratio, we need some technical preparations. We start by bounding the numbers µi by the
numbers cj .

Lemma 4. We have µi 6 cj/(j − i) for all (i, j) with 0 6 i < j 6 r.

Proof. Fix i and j with 0 6 i < j 6 r, and let X be the feasible region of the maximization problem which
characterizes µi, i.e.,

X =
{

(y, π) ∈ R|A| × R|V | : πv − πw + ya 6

{
0 for a = (v, w) ∈ Ae ∪Bi,
1 for a = (v, w) ∈ Ap \Bi,

ya 6 0 for all a ∈ A
}
,

where Bi is the set of arcs built by Quickest-increment in the first µ0 + · · · + µi−1 time periods. Since the
maximum flow value on Ae ∪Bi equals f + i, we have that X ⊆ Y where

Y =
{

(y, π) ∈ R|A| × R|V | : πv − πw + ya 6

{
0 for a = (v, w) ∈ Ae,
1 for a = (v, w) ∈ Ap,

(f + i)(πs − πt) +
∑
a∈A

ya 6 0, ya 6 0 for all a ∈ A
}
,

Consequently,

µi 6 max
{

(f + i+ 1)(πs − πt) +
∑
a∈A

ya : (y, π) ∈ Y
}
,

and by taking the dual we obtain

µi 6 min
{ ∑
a∈Ap

xa :
∑

a∈δout(v)

xa −
∑

a∈δinv)

xa =

0 for v ∈ V \ {s, t},
f + i+ 1− (f + i)z for v = s,

−f − i− 1 + (f + i)z for v = t,

xa + z 6 1 for all a ∈ A, xa > 0 for all a ∈ A, z > 0
}
. (3)

Let x ∈ R|A| be an optimal solution for the problem (1) to determine cj , i.e., an s-t-flow of value f + j.
Solving the system

(f + j)γ = f + i+ 1− (f + i)z, γ + z = 1

for γ and z yields γ = 1/(j − i) and z = (j − i− 1)/(j − i), and this implies that a feasible solution (x′, z)
for problem (3) can be obtained by setting x′a = xa/(j − i) for all a ∈ A and z = (j − i− 1)/(j − i). Hence
the optimal value of problem (3) is at most cj/(j − i) and this concludes the proof.

From Lemmas 3 and 4 it follows that (µ, c, T) ∈ Rr × Rr+1 × R satisfies the following conditions:

µi − µi+1 6 0 for 0 6 i 6 r − 2, (4)

(j − i)µi − cj 6 0 for 0 6 i < j 6 r, (5)

r−1∑
i=0

µi − T 6 0, (6)

c0 = 0, (7)

µi, cj > 0 for 0 6 i 6 r − 1, 1 6 j 6 r. (8)

10

Let X(r) ⊆ Rr × Rr+1 × R denote the set of all (µ, c, T) satisfying (4) to (8). Using Lemmas 1 and 2, a
number γ > 1 is an upper bound for the approximation ratio of Quickest-increment, provided

TF −
r∑
j=1

cj 6 γ

[
TF −

r−1∑
i=0

µi(r − i)
]

is a valid inequality for X(r), or equivalently

F (1− γ)T −
r∑
j=1

cj + γ

r−1∑
i=0

µi(r − i) 6 0

for all (µ, c, T) ∈ X(r). Since F > r and γ > 1, this inequality is strengthened when F is replaced by r on
the left hand side. By duality, the stronger inequality is valid for X(r), provided the following system has a
solution:

j−1∑
i=0

yij 6 1 for 1 6 j 6 r, (9)

z +

r∑
j=i+1

(j − i)yij + xi − xi−1 > γ(r − i) for 0 6 i 6 r − 1, (10)

z 6 r(γ − 1), (11)

x−1 = xr−1 = 0, (12)

z, xi > 0 for 0 6 i 6 r − 2, (13)

yij > 0 for 0 6 i < j 6 r. (14)

Let Y (r, γ) ⊆ Rr+1 × Rr(r+1)/2 × R be the set of all (x, y, z) satisfying (9) to (14). The above argument
implies the following theorem which provides a sufficient condition for γ to be an approximation factor for
Quickest-increment on all instances with F − f = r.

Theorem 2. If Y (r, γ) 6= ∅, then Quickest-increment is a γ-approximation algorithm for all instances of
the incremental maximum flow problem with unit capacities and F − f = r.

Consequently, in order to establish that Quickest-increment is a 3/2-approximation algorithm, it is
sufficient to prove the Y (r, 3/2) 6= ∅ for all r > 2. To do this, we need another lemma.

Lemma 5. Let r > 2 and s = b(r + 2)/3c. Then the following system has a solution with non-negative yij
for 0 6 i 6 s, i+ 1 6 j 6 r:

r∑
j=i+1

(j − i)yij > r − 3

2
i 0 6 i 6 s,

min{j−1,s}∑
i=0

yij 6 1 1 6 j 6 r.

Proof. We proceed by induction on r. For r = 2, s = 1, a solution is given by y01 = 1, y02 = y12 = 1/2. So
we assume r > 2, and we distinguish two cases.

Case 1. r ≡ 0 or 2 (mod 3). By induction, there are nonnegative numbers yij for 0 6 i 6 s and i + 1 6
j 6 r − 1 satisfying

r−1∑
j=i+1

(j − i)yij > r − 1− 3

2
i 0 6 i 6 s,

min{j−1,s}∑
i=0

yij 6 1 1 6 j 6 r − 1.

11

We extend this by yir = 1/(r − i) for 0 6 i 6 s. Then
∑r
j=i+1(j − i)yij > r − 3

2 i for 0 6 i 6 s and

s∑
i=0

yir =

s∑
i=0

1

r − i 6
s+ 1

r − s 6 1.

Case 2. r ≡ 1 (mod 3) and s = (r + 2)/3. For r = 4, a solution is given by

y01 = 1, y02 = 1, y03 = 1/3, y04 = 0,

y12 = 0, y13 = 2/3, y14 = 7/18,

y23 = 0, y24 = 1/2.

For r > 4, by induction, there are nonnegative numbers yij for 0 6 i 6 s − 1 and i + 1 6 j 6 r − 3
satisfying

r−3∑
j=i+1

(j − i)yij > r − 3− 3

2
i 0 6 i 6 s− 1,

min{j−1,s−1}∑
i=0

yij 6 1 1 6 j 6 r − 3.

Let i0 = b(r − 5)/4c. We extend our solution by

yij =

{
3

(r−2)−i for j = r − 2,

0 for j ∈ {r − 1, r}
for 0 6 i 6 i0,

yij =

{
3

(r−1)−i for j = r − 1,

0 for j ∈ {r − 2, r}
for i0 + 1 6 i 6 s− 1,

ysj =

{
3(r−2)
4(r−1) for j = r,

0 for j < r.

Then
∑r
j=i+1(j − i)yij > r − 3

2 i for 0 6 i 6 s,

s∑
i=0

yi,r−2 =

i0∑
i=0

3

(r − 2)− i 6
3(i0 + 1)

r − 2− i0
6

3(r − 1)/4

r − 2− (r − 5)/4
= 1,

s∑
i=0

yi,r−1 =

s−1∑
i=i0+1

3

(r − 1)− i 6
3(s− 1− i0)

r − 1− (s− 1)
6

3
(
r+2

3 − 1− r−5
4

)
r − r+2

3

=
1
4 (r + 11)
1
3 (2r − 2)

=
3r + 33

8r − 8
6 1,

where we used r > 5 for the last inequality, and
∑s
i=0 yir = ysr 6 1.

Using Lemma 5, we can exhibit a point in Y (r, 3/2).

Lemma 6. Y (r, 3/2) 6= ∅ for all r > 2.

Proof. Let s = b(r + 2)/3c and let yij for 0 6 i 6 s and i+ 1 6 j 6 r be a point as described in Lemma 5.
For i > s and i+ 1 6 j 6 r, let yij = 0. In addition, let xi = 0 for 0 6 i 6 s, and z = r/2. Finally, let

xi = (i− s)
(
r − 3

2
s− 3

4
(i− s+ 1)

)
for s+ 1 6 i 6 r − 2.

12

We claim that (x, y, z) ∈ Y (r, 3/2). Constraints (9) follow immediately Lemma 5. The same is true for
constraints (10) for 0 6 i 6 s. For s < i 6 r − 2, constraints (10) are satisfied because

xi − xi−1 = (i− s)
(
r − 3

2
s− 3

4
(i− s+ 1)

)
− (i− 1− s)

(
r − 3

2
s− 3

4
(i− s)

)
= r − 3

2
i.

Finally, constraint (10) for i = r − 1 follows from

xr−2 = (r − 2− s)
(
r − 3

2
s− 3

4
(r − 1− s)

)
=

r/2− 3/2 if r ≡ 0 (mod 3),

r/6− 2/3 if r ≡ 1 (mod 3),

r/3− 7/6 if r ≡ 2 (mod 3),

which also implies xi > 0 for all i.

The bound of 3/2 for the approximation ratio of Quickest-increment is a consequence of Theorem 2 and
Lemma 6.

Theorem 3. Quickest-increment is a 3/2-approximation algorithm for the incremental maximum flow prob-
lem with unit capacities.

Let us examine the example in Figure 3 more closely. It has initial flow value f = 0 and ultimate flow
value F = 2 and the essence of the example is that the arcs that are built to reach a flow value 1 cannot be
used for the (ultimate) flow value 2. Figure 5 shows an attempt to generalize the example to one with initial
flow value f = 0 and ultimate flow value F = 3. The instance has a time horizon T = 7k + 3. Quickest-

s t

2k + 1

k − 1

kk

k + 1k + 1

Figure 5: An instance with r = 3.

increment starts with building the middle path with k− 1 potential arcs. Then the cheapest way to achieve
a flow of value 2 is to build the two paths containing k potential arcs each. Finally, all the remaining arcs
have to be built in order to achieve a flow of value 3. This gives a total flow of

(k − 1) · 0 + 2k · 1 + (4k + 3) · 2 + 3 = 10k + 9.

On the other hand, the optimum for large k is to build the ultimate flow immediately which yields

(k + 1) · 0 + (k + 1) · 1 + (2k + 1) · 2 + 3k · 3 = 14k + 3.

What works in favor of the heuristic, in terms of performance, is that in order for the heuristic not to build
the upper path to achieve a flow of value 2, it has to be long enough, i.e. longer than the sum of the lengths
of the diagonal paths that the heuristic chooses.

13

If we define

ϕ(r) = inf{γ : Quickest-increment is a γ-approximation for instances with F − f = r},

then Theorem 3 shows that ϕ(r) 6 3/2. It is possible to show that ϕ(r) 6 4/3 for r > 70, and we conjecture
that it is possible to show that limr→∞ ϕ(r) = 1.

4.2 The incremental maximum matching problem

In our quest for polynomially solvable cases of incremental network design with maximum flows, we next
consider, in addition to unit capacities on all arcs, imposing a restriction on the structure of the network.
More specifically, a node set N = V ∪W∪{s, t} and an arc set A consisting of existing arcs (s, v) for all v ∈ V ,
existing arcs (w, t) for all w ∈W , and some arcs (v, w) with v ∈ V and w ∈W , which can be either existing
or potential. Thus, s-t flows correspond to matchings in the bipartite graph (V ∪W, {{v, w} : (v, w) ∈ A}),
and therefore we call this special case the incremental maximum matching problem.

The example in Figure 6 shows that Quickest-to-ultimate may fail to find an optimal solution. The
unique maximum cardinality matching is {(1, 2), (3, 4), . . . , (15, 16)} and building arcs (1,2), (3,4), (5,6), and
(7,8), followed by arcs (9,10), (11,12), (13,14), and (15,16), followed by (9,4) results in a total cumulative
flow for Quickest-to-ultimate of 4 · 6 + 4 · 7 + 2 · 8 = 68, whereas building arcs (1,2) and (9,4), followed by
arcs (3, 4), (5, 6), . . . , (15, 16) results in a total cumulative flow of 2 · 6 + 7 · 7 + 8 = 69.

s

t

1 3 5 7 9 11 13 15

2 4 6 8 10 12 14 16

Figure 6: Bad instance for Quickest-to-ultimate.

Similarly, the example in Figure 7 shows that Quickest-increment may fail to find an optimal solution.
The initial maximum matching has size 5, and the unique cheapest way to obtain a matching of size 6 is
to build arcs (5, 8) and (7, 10). After that, all the remaining potential arcs need to be build to reach a
matching of size 7, and the total cumulative flow for Quickest-increment is 2 ·5 + 6 ·6 + 7 = 53. On the other
hand, building arcs (1, 2), . . . , (13, 14) followed by arcs (5,8) and (7,10) results in a total cumulative flow of
3 · 5 + 3 · 6 + 3 · 7 = 54.

Thus, even restricting the structure of the network to bipartite graphs does not trivially give a polyno-
mially solvable case of incremental network design with maximum flows. We have been able to improve the
performance guarantee of Quickest-to-ultimate to 4/3 for instances of the incremental maximum matching
problem. The proof is given in the appendix.

14

s

t

1 3 5 7 9 11 13

2 4 6 8 10 12 14

Figure 7: Bad instance for Quickest-increment.

5 Computational study

We have conducted a computational study to gain insight into the characteristics that make instances of the
incremental maximum flow problem hard to solve, to compare the performance of the two MIP formulations,
and to assess the performance of the three heuristics.

The following computational tools were used to develop and analyze the formulations and algorithms:
Python 2.7.5, Matplotlib 1.3.1, NetworkX 1.8.1, and Gurobi 5.5. All computational experiments were con-
ducted on a 64-bit Win7 with Intel Xeon CPU (E5-1620) with 8 cores and 32GB of RAM using a single
thread.

5.1 Instance generation

For the computational experiments in which we compare the performance of the IP formulations and the
heuristics, we use two classes of instances: one using general graphs and one using layered graphs.

General graphs are parameterized by the number of nodes n, the expected density d = 2|A|/n(n− 1) ∈
{0.1, 0.3, 0.7}, the expected fraction of potential arcs p = |Ap|/|A| ∈ {0.3, 0.7}, and the maximum arc
capacity umax ∈ {1, 3, 10}. For each combination of parameters, 10 random instances are generated. More
specifically, for a given number of nodes n, an arc between two nodes exists with probability d, and if an
arc between two nodes exists, the arc is a potential arc with probability p (and thus an existing arc with
probability 1− p).

Layered graphs consist of a source node, a sink node, and ` layers in between (` > 2). The source is
connected to every node in the first layer and every node in the last layer is connected to the sink. The nodes
in layer i may be connected to a node in layer i+1. Layered graphs are parameterized by the number of layers
`, the number of nodes in each layer n, the expected density d = |A|/(`− 1)n2 ∈ {0.1, 0.3, 0.7}, the expected
fraction of potential arcs p = |Ap|/|A| ∈ {0.3, 0.7}, and the maximum arc capacity umax ∈ {1, 3, 10}. For
each combination of parameters, 10 random instances are generated. The generation proceeds similar to the
generation of general instances. Layered instances are considered because they ensure a minimum distance
between the source and the sink.

5.2 Comparison of the MIP models

We start by determining the characteristics that make an instance difficult to solve and, at the same time,
comparing the performance of the two MIP formulations presented in Section 2.

Tables 1 and 2 present average performance statistics for various combinations of the instance parameters
(with n = 35 for general graphs and ` = 5 and n = 10 for layered graphs). More specifically, we report the arc

15

density (d), the fraction of potential arcs (p), the maximum arc capacity (umax), the difference between the
value of an ultimate and an initial maximum flow (F − f), the number of instances not solved to optimality
within the time limit (#), the average initial gap (initial gap), computed as (zLP − zIP)/zIP, where zLP the
value of the LP relaxation and zIP is the value of the best solution found, the average final gap over the
instances not solved to optimality (final gap), where in the gap computation zLP is replaced by the best
bound at termination, and the average solution time (time) and average number of nodes in the search tree
(#nodes) over the instances solved to optimality.

Table 1: Comparison of MIP models for general graphs with n = 35; time limit 1 hour

IMFP1 IMFP2

initial final initial final
d p umax F − f # gap gap time #nodes # gap gap time #nodes

0.1 0.3 1 0.9 0.12% 0.13 1.5 0.00% 0.01 0.0
0.1 0.3 3 1.5 0.28% 0.15 0.5 0.43% 0.00 0.0
0.1 0.3 10 7.3 0.36% 0.22 1.5 0.94% 0.05 4.5

0.1 0.7 1 2.1 0.55% 23.88 309.1 0.00% 0.00 0.0
0.1 0.7 3 4.0 1.17% 7.33 325.9 1.11% 0.03 0.0
0.1 0.7 10 11.6 1.46% 73.66 1,694.7 1.83% 1.73 107.1

0.3 0.3 1 1.9 0.02% 1.56 75.5 0.00% 0.01 0.0
0.3 0.3 3 7.7 0.07% 3.01 66.0 0.13% 0.05 0.0
0.3 0.3 10 11.7 0.03% 1.81 7.0 0.13% 0.09 0.0

0.3 0.7 1 6.4 0.13% 288.94 1,461.1 0.00% 0.04 0.0
0.3 0.7 3 12.8 1 0.14% 0.02% 594.46 3,529.1 0.17% 0.46 0.7
0.3 0.7 10 37.0 1 0.14% 0.10% 607.91 925.4 1 0.28% 0.04% 9.91 73.6

Table 2: Comparison of MIP models for layered graphs with ` = 5 and n = 10; time limit 1 hour.

IMFP1 IMFP2

initial final initial final
d p umax F − f # gap gap time #nodes # gap gap time #nodes

0.1 0.3 1 1.6 2.13% 0.02 6.3 0.00% 0.00 0.0
0.1 0.3 3 1.3 1.67% 0.01 0.0 0.99% 0.00 0.0
0.1 0.3 10 6.6 4.76% 0.03 8.1 6.46% 0.01 0.0

0.1 0.7 1 3.1 2.84% 1.35 502.9 0.00% 0.00 0.0
0.1 0.7 3 4.0 7.20% 3.24 905.5 6.79% 0.01 0.0
0.1 0.7 10 5.5 5.69% 0.16 119.8 6.77% 0.01 0.0

0.3 0.3 1 1.7 0.09% 0.36 3.3 0.00% 0.00 0.0
0.3 0.3 3 6.5 0.86% 11.23 1603.6 1.00% 0.08 18.7
0.3 0.3 10 15.5 0.80% 3.76 418.4 1.29% 3.36 394.5

0.3 0.7 1 8.9 7 0.72% 0.35% 1473.03 77596.0 0.00% 0.03 0.0
0.3 0.7 3 14.8 8 3.43% 0.52% 1398.13 67872.5 1 3.30% 0.24% 42.99 1574.8
0.3 0.7 10 32.0 9 4.64% 0.66% 1225.42 17924.0 9 5.07% 0.65% 1,705.86 15948.0

First and foremost, we observe that IMFP2 performs significantly better than IMFP1; not only are
more instances solved to optimality within the time limit of 1 hour, but the instances are solved much faster.
(Interestingly, the initial gap for IMFP2 tends to be larger than the initial gap for IMFP1 when the maximum
arc capacity is greater than 1.)

As expected, the instances get more difficult when the density, and thus the number of arcs, increases,
when the fraction of potential arcs, and thus the planning horizon, increases, and when the maximum arc
capacity increases.

IMFP1 is impacted primarily by the length of the planning horizon, i.e., the number of possible build

16

sequences, whereas IMFP2 is impacted primarily by the difference between the value of the ultimate flow F
and the value of the initial flow f , i.e., the flow increase that has to be accommodated.

The density d relates to the number of arcs in the graph and thus the number of paths from source to
sink and thus the maximum flow. Therefore, if the density increases, then the length of the planning horizon
and the difference between F and f increase, which impacts the performance of both formulations. The
fraction of potential arcs p relates to the planning horizon and thus the number of possible sequences in
which arcs can be build, but also impacts f and thus the difference between F and f . Therefore, if this
fraction increases, then the length of the planning horizon and the difference between F and f increase,
which should impact the performance of both formulations, but most likely the performance of IMFP1. The
maximum arc capacity umax impacts the difference between F and f . Therefore, if the arc capacity increases,
then the difference between F and f increases, which impacts the performance of IMFP2, but also IMFP1.

To further investigate the behavior of the two formulations, Tables 3 and 4 present detailed performance
statistics for 10 instances in the most difficult class, i.e., d = 0.3, p = 0.7, and umax = 10, when the time
limit is increased to 4 hours. The instances are presented in nondecreasing order of the difference between
the value of the ultimate flow and the value of the initial flow, i.e., F − f .

Table 3: Comparison of MIP models for general graphs with n = 35, d = 0.3, p = 0.7, umax = 10; time limit
4 hours.

IMFP1 IMFP2

initial final initial final
F − f gap gap time # nodes gap gap time # nodes

15 0.08% 48.08 34 0.16% 0.25 0
25 0.07% 38.20 152 0.16% 0.50 0
26 0.08% 823.75 980 0.17% 1.72 0
38 0.24% 3,125.46 5,437 0.34% 11.13 254
39 0.20% 83.41 520 0.36% 1.39 0
39 0.12% 69.91 306 0.27% 1.28 0
45 0.26% 0.04% 14,400.00 40,804 0.35% 365.06 865
48 0.26% 5,989.53 23,078 0.39% 40.11 283
55 0.32% 5,134.81 24,585 0.45% 6.83 0
71 0.25% 4,333.61 30,892 0.41% 63.86 135

Table 4: Comparison of MIP models for layered graphs with ` = 5, n = 10, d = 0.3, p = 0.7, umax = 10;
time limit 4 hours.

IMFP1 IMFP2

initial final initial final
F − f gap gap time # nodes gap gap time # nodes

24 2.84% 3,468.53 26,927 3.23% 625.37 21,858
26 3.82% 0.07% 14,400.00 1,041,170 4.27% 1,450.65 102,528
30 5.30% 0.19% 14,400.00 210,589 5.64% 2,602.19 99,424
34 2.85% 0.12% 14,400.00 260,528 3.26% 0.10% 14,400.00 212,306
35 6.09% 0.41% 14,400.00 354,786 6.48% 0.26% 14,400.00 551,579
38 4.21% 0.10% 14,400.00 281,519 4.67% 12,281.30 196,572
39 2.40% 10,759.84 300,278 2.83% 0.22% 14,400.00 202,730
39 5.24% 0.44% 14,400.00 130,664 5.59% 0.24% 14,400.00 312,643
44 3.91% 0.52% 14,400.00 37,954 4.29% 0.42% 14,400.00 72,215
45 3.09% 0.32% 14,400.00 52,449 3.64% 0.39% 14,400.00 97,568

We see that the different between the value of the ultimate flow and the value of the initial flow, i.e.,
F − f , is a good predictor of the difficulty of an instance for both formulations. The larger the value of
F − f , the more likely it is that the instance cannot be solved and if an instance cannot be solved, the more
likely it is that the final gap is large. These “trends” are most clearly seen in the results for the layered

17

instances. For the layered instances, it is also interesting to note that there is one instance that can be solved
by IMFP1, but not by IMFP2.

Additional analysis and experimentation revealed that in addition to the difference F − f , the number
of flow increases from f to F also seems to impact solution time, with more flow increases usually resulting
in longer solution times. The number of flow increases from f to F depends on the arc capacities in an
instance, and on how these arc capacities interact on the different paths from source to sink.

5.3 Heuristics

For the difficult instances, we compare the performance of Quickest-increment, Quickest-to-ultimate, and
Quickest-to-target with p = 2, r0 = f, r1 = b(F − f)/2c, and r2 = F . The results are shown in Tables
5 and 6, where we report the difference between the ultimate and initial flow values (F − f), for each of
the heuristics the cumulative flow (flow), the relative difference to the best known cumulative flow (∆ =
(zbest − zheur)/zbest), and the solution time (time), and for IMFP2 the value of the first feasible solution
(first), the relative difference to the best solution (∆ = (zbest − zfirst)/zbest), the time to reach the first
feasible solution, the value of the best solution (best), and the time to reach the best feasible solution (time).
A time limit of 3,600 seconds was imposed for the solution of IMFP2.

As expected, the three heuristics are able to produce high-quality solutions quickly (with Quickest-
increment possibly being slightly slower than the other two). For these instances, the hybrid heuristic
Quickest-to-target seems to performs best (on average within 0.03% from the best known solution for in-
stances on general graphs and within 0.47% from the best known solution for instances on layered graphs).
However, IMFP2 also produces high-quality solutions when given an hour of computing time, often noticeably
better than the heuristic solutions.

As the instances used for the above experiments are relatively small, we performed a final experiment
in which we use general and layered graphs with 300 nodes to investigate whether the performance of the
heuristics (both in terms of quality and time) scales well. Instances of this size are beyond what can be
solved to optimality in a reasonable amount of time with IMFP2. Therefore, instead, we solved the instances
twice with Gurobi parameter SolutionLimit set to one the first time and to two the second time. When
SolutionLimit is set to one, Gurobi uses its embedded heuristics to generate a feasible solution and does
not even solve the linear programming relaxation. When SolutionLimit is set to two, Gurobi solves at least
one linear programming relaxation. The results can be found in Table 7 and Table 8.

A few interesting observations can be made. For general instances of this size, Quickest-increment
performs best (it produces the best solution for all but one instance), but it is noticeably slower than Quickest-
to-ultimate and Quickest-to-target. The first solution found by IMFP2 is the worst for all instances, but the
second solution found by IMFP2 matches the best in all but one instance. However, it takes substantially
longer to find that solution. For layered instances of this size, the situation is not as clear cut, both Quickest-
increment and Quickest-to-ultimate perform well and outperform IMFP2 in all but one instance. Overall,
Quickest-to-target produces high-quality solution very efficiently for all instances and should be the method
of choice when time is important.

6 Final remarks

We have studied the incremental network design with maximum flows. We have investigated the performance
of mixed integer programming formulations and we have analyzed the performance of natural heuristics, both
theoretically and empirically.

On the theoretic side, the complexity status of the incremental maximum flow problem for instances with
unit arc capacities remains open, even when the network is restricted to bipartite graphs. On the algorithmic
side, we have identified classes of instances where integer programming solvers struggle and where the natural
heuristics, although fast, do not necessarily provide high-quality solutions. Thus, there is an opportunity to
explore more sophisticated heuristics, e.g., metaheuristics.

Finally, there are various other incremental network design problems that are worth studying, e.g., the
incremental multicommodity flow problem.

18

T
ab

le
5:

C
om

p
ar

is
on

of
h

eu
ri

st
ic

p
er

fo
rm

a
n

ce
fo

r
g
en

er
a
l

g
ra

p
h

s
w

it
h
n

=
3
5
,
d

=
0.

3
,
p

=
0.

7
,

a
n

d
u

m
a
x

=
1
0
.

Q
u
ic
k
e
st
-i
n
c
re
m
e
n
t

Q
u
ic
k
e
st
-t
o
-u

lt
im

a
te

Q
u
ic
k
e
st
-t
o
-t
a
rg
e
t

IM
F

P
2

in
st

a
n
c
e

F
−
f

fl
o
w

∆
ti

m
e

fl
o
w

∆
ti

m
e

fl
o
w

∆
ti

m
e

fi
rs

t
∆

ti
m

e
b

e
st

ti
m

e

1
3
7

1
2
,8

8
7

0
.0

0
0
2

1
.2

0
1
2
,8

8
4

0
.0

0
0
5

0
.6

1
1
2
,8

8
4

0
.0

0
0
5

0
.7

0
1
2
,8

6
8

0
.0

0
1
7

0
.1

3
1
2
,8

9
0

6
.1

3
2

1
4

8
,6

9
0

0
.0

0
0
0

0
.3

7
8
,6

9
0

0
.0

0
0
0

0
.2

4
8
,6

9
0

0
.0

0
0
0

0
.3

4
8
,6

9
0

0
.0

0
0
0

0
.0

3
8
,6

9
0

0
.0

3
3

6
1

1
6
,3

3
1

0
.0

0
2
1

2
.2

3
1
6
,3

4
7

0
.0

0
1
2

0
.8

6
1
6
,3

4
1

0
.0

0
1
5

0
.9

1
1
6
,3

0
4

0
.0

0
3
8

0
.2

7
1
6
,3

6
6

1
4
7
.2

7
4

3
0

1
1
,6

7
3

0
.0

0
0
5

1
.0

7
1
1
,6

7
9

0
.0

0
0
0

0
.5

2
1
1
,6

7
9

0
.0

0
0
0

0
.6

1
1
1
,6

7
6

0
.0

0
0
3

0
.0

9
1
1
,6

7
9

5
.0

9
5

2
6

9
,4

5
6

0
.0

0
0
2

0
.7

4
9
,4

5
6

0
.0

0
0
2

0
.4

7
9
,4

5
8

0
.0

0
0
0

0
.6

0
9
,4

5
3

0
.0

0
0
5

0
.0

6
9
,4

5
8

1
.0

6
6

3
3

9
,6

8
7

0
.0

0
0
3

1
.0

6
9
,6

8
9

0
.0

0
0
1

0
.4

3
9
,6

8
9

0
.0

0
0
1

0
.5

5
9
,6

5
8

0
.0

0
3
3

0
.0

8
9
,6

9
0

2
.0

8
7

5
8

1
8
,9

0
2

0
.0

0
0
2

1
.4

8
1
8
,9

0
4

0
.0

0
0
1

0
.6

5
1
8
,9

0
5

0
.0

0
0
0

0
.7

7
1
8
,8

0
8

0
.0

0
5
1

1
.3

1
1
8
,9

0
5

5
5
.3

1
8

4
4

1
5
,7

0
6

0
.0

0
0
0

1
.2

5
1
5
,7

0
5

0
.0

0
0
1

0
.6

3
1
5
,7

0
6

0
.0

0
0
0

0
.7

0
1
5
,7

0
1

0
.0

0
0
3

0
.1

1
1
5
,7

0
6

1
.1

1
9

2
7

1
0
,0

9
8

0
.0

0
0
1

1
.0

1
1
0
,0

9
7

0
.0

0
0
2

0
.5

2
1
0
,0

9
6

0
.0

0
0
3

0
.5

2
1
0
,0

7
8

0
.0

0
2
1

0
.0

8
1
0
,0

9
9

0
.4

7
1
0

2
6

8
,4

1
8

0
.0

0
0
1

0
.8

5
8
,4

1
8

0
.0

0
0
1

0
.5

2
8
,4

1
8

0
.0

0
0
1

0
.5

6
8
,4

1
8

0
.0

0
0
1

0
.0

3
8
,4

1
9

2
.0

3

0
.0

0
0
4

1
.1

2
6

0
.0

0
0
2

0
.5

4
5

0
.0

0
0
3

0
.6

2
6

0
.0

0
1
7

0
.2

1
9

2
2
.0

5
8

19

T
ab

le
6:

C
om

p
ar

is
on

of
h

eu
ri

st
ic

p
er

fo
rm

a
n

ce
fo

r
la

ye
re

d
g
ra

p
h

s
w

it
h
`

=
5
,
n

=
1
0
,
d

=
0.

3
,
p

=
0.

7
,

a
n

d
u

m
a
x

=
1
0
.

Q
u
ic
k
e
st
-i
n
c
re
m
e
n
t

Q
u
ic
k
e
st
-t
o
-u

lt
im

a
te

Q
u
ic
k
e
st
-t
o
-t
a
rg
e
t

IM
F

P
2

in
st

a
n
c
e

F
−
f

fl
o
w

∆
ti

m
e

fl
o
w

∆
ti

m
e

fl
o
w

∆
ti

m
e

fi
rs

t
∆

ti
m

e
b

e
st

ti
m

e

1
2
9

3
,2

5
4

0
.0

1
5
7

1
.2

2
3
,2

9
5

0
.0

0
3
3

0
.8

2
3
,2

9
4

0
.0

0
3
6

0
.8

4
3
,2

4
9

0
.0

1
7
2

0
.0

8
3
,3

0
6

1
9
.0

8
2

3
0

2
,1

8
8

0
.0

2
7
1

1
.2

1
2
,2

3
3

0
.0

0
7
1

0
.8

3
2
,2

2
6

0
.0

1
0
2

0
.8

0
2
,1

9
0

0
.0

2
6
2

0
.0

5
2
,2

4
9

1
5
.0

5
3

3
7

2
,9

4
6

0
.0

0
8
1

0
.8

9
2
,9

5
6

0
.0

0
4
7

0
.6

0
2
,9

6
1

0
.0

0
3
0

0
.6

4
2
,8

7
9

0
.0

3
0
6

0
.1

1
2
,9

7
0

3
1
.1

1
4

1
6

1
,7

3
9

0
.0

0
6
3

0
.4

9
1
,7

4
3

0
.0

0
4
0

0
.4

5
1
,7

5
0

0
.0

0
0
0

0
.5

0
1
,7

3
1

0
.0

1
0
9

0
.0

1
1
,7

5
0

0
.3

0
5

4
1

3
,3

2
1

0
.0

1
6
0

1
.2

6
3
,3

5
2

0
.0

0
6
8

0
.8

5
3
,3

4
7

0
.0

0
8
3

0
.9

3
3
,3

2
3

0
.0

1
5
4

0
.0

6
3
,3

7
5

1
5
.0

6
6

3
3

2
,6

0
1

0
.0

0
6
9

1
.1

4
2
,6

1
2

0
.0

0
2
7

0
.9

0
2
,6

1
1

0
.0

0
3
1

0
.9

4
2
,5

2
5

0
.0

3
5
9

0
.0

6
2
,6

1
9

4
3
.0

6
7

4
3

3
,5

4
3

0
.0

2
5
0

1
.4

1
3
,6

0
4

0
.0

0
8
3

1
.2

3
3
,6

0
7

0
.0

0
7
4

1
.0

6
3
,5

0
5

0
.0

3
5
5

0
.1

9
3
,6

3
4

2
9
8
.1

9
8

2
2

1
,6

8
4

0
.0

0
2
4

0
.5

7
1
,6

8
5

0
.0

0
1
8

0
.5

1
1
,6

8
5

0
.0

0
1
8

0
.5

6
1
,6

6
1

0
.0

1
6
0

0
.0

2
1
,6

8
8

1
.0

2
9

4
6

3
,2

4
9

0
.0

1
0
7

1
.2

5
3
,2

0
6

0
.0

2
3
8

1
.3

1
3
,2

6
0

0
.0

0
7
3

1
.1

0
3
,1

9
4

0
.0

2
7
4

0
.1

3
3
,2

8
4

2
7
.1

3
1
0

5
4

3
,7

6
0

0
.0

0
7
9

1
.3

4
3
,7

3
6

0
.0

1
4
2

1
.5

1
3
,7

8
0

0
.0

0
2
6

1
.2

3
3
,6

5
2

0
.0

3
6
4

0
.1

3
3
,7

9
0

3
7
.1

3
0
.0

1
2
6

1
.0

7
8

0
.0

0
7
7

0
.9

0
1

0
.0

0
4
7

0
.8

6
0
.0

2
5
2

0
.0

8
4

4
8
.7

1
3

20

T
ab

le
7:

C
om

p
ar

is
on

of
h

eu
ri

st
ic

p
er

fo
rm

a
n

ce
o
n

la
rg

e
in

st
a
n

ce
s;

g
en

er
a
l

g
ra

p
h

s
w

it
h
n

=
3
0
0
,
d

=
0.

3
,
p

=
0.

7
,

a
n

d
u

m
a
x

=
1
0
.

Q
u
ic
k
e
st
-i
n
c
re
m
e
n
t

Q
u
ic
k
e
st
-t
o
-u

lt
im

a
te

Q
u
ic
k
e
st
-t
o
-t
a
rg
e
t

IM
F

P
2

in
st

a
n
c
e

F
−
f

fl
o
w

ti
m

e
fl
o
w

ti
m

e
fl
o
w

ti
m

e
fi

rs
t

ti
m

e
se

c
o
n
d

ti
m

e

1
3
4
9

8
,5

1
0
,0

2
2

5
7
3
.8

9
8
,5

1
0
,0

1
9

6
3
.9

6
8
,5

1
0
,0

1
8

6
9
.6

4
8
,5

0
1
,3

3
9

3
4
6
.5

0
8
,5

1
0
,0

2
2

2
,6

1
8
.5

7
2

2
7
6

7
,7

4
8
,9

5
0

6
0
7
.1

3
7
,7

4
8
,9

2
6

6
6
.6

4
7
,7

4
8
,9

3
6

8
0
.4

2
7
,7

4
1
,6

5
1

2
6
1
.8

8
7
,7

4
8
,9

5
0

1
,5

5
1
.8

4
3

3
0
6

7
,4

5
5
,8

5
1

7
0
8
.2

6
7
,4

5
5
,8

2
5

7
6
.6

1
7
,4

5
5
,8

4
0

8
2
.1

0
7
,4

4
6
,4

1
9

2
9
4
.2

9
7
,4

5
5
,8

5
1

2
,0

4
3
.6

8
4

3
0
2

7
,6

9
3
,0

3
6

5
5
3
.9

3
7
,6

9
3
,0

8
0

6
2
.8

4
7
,6

9
3
,0

8
4

6
8
.2

1
7
,6

8
3
,7

5
3

2
9
8
.4

4
7
,6

9
3
,0

9
5

2
,8

2
0
.6

5
5

3
0
3

8
,5

6
1
,1

4
6

6
3
6
.0

9
8
,5

6
1
,1

4
6

7
4
.1

3
8
,5

6
1
,1

4
1

8
1
.3

9
8
,5

5
1
,9

0
9

2
9
5
.4

9
8
,5

6
1
,1

4
6

2
,1

9
4
.7

6
6

3
0
0

8
,1

7
3
,1

7
6

6
4
7
.9

9
8
,1

7
3
,1

7
5

6
8
.0

8
8
,1

7
3
,1

7
4

7
3
.6

6
8
,1

6
4
,7

4
1

2
9
1
.1

0
8
,1

7
3
,1

7
3

1
,8

3
7
.5

0
7

3
2
0

8
,5

5
1
,2

4
4

6
7
7
.6

0
8
,5

5
1
,2

2
6

7
0
.4

6
8
,5

5
1
,2

3
7

7
3
.8

1
8
,5

4
3
,0

0
3

3
1
8
.9

1
8
,5

5
1
,2

4
4

2
,6

4
6
.8

2
8

3
7
8

9
,7

0
7
,3

3
5

7
6
0
.9

5
9
,7

0
7
,3

2
1

8
5
.6

6
9
,7

0
7
,3

3
4

9
1
.2

6
9
,6

9
6
,8

2
7

3
9
0
.2

6
9
,7

0
7
,3

3
5

2
,9

2
2
.1

4
9

3
3
5

8
,0

7
8
,4

7
0

6
2
6
.2

1
8
,0

7
8
,4

7
0

7
5
.9

3
8
,0

7
8
,4

6
8

8
0
.5

3
8
,0

6
8
,7

0
7

3
3
1
.7

3
8
,0

7
8
,4

7
0

2
,2

0
7
.8

5
1
0

2
8
5

7
,6

7
6
,4

7
6

5
4
6
.0

8
7
,6

7
6
,4

3
2

6
4
.6

3
7
,6

7
6
,4

1
8

6
9
.3

6
7
,6

6
8
,6

3
6

2
7
2
.2

0
7
,6

7
6
,4

7
6

2
,0

5
1
.9

9

6
3
3
.8

1
7
0
.8

9
4

7
7
.0

3
8

3
1
0
.0

8
2
,2

8
9
.5

8

21

T
ab

le
8:

C
om

p
ar

is
on

of
h

eu
ri

st
ic

p
er

fo
rm

a
n

ce
o
n

la
rg

e
in

st
a
n

ce
s;

la
ye

re
d

g
ra

p
h

s
w

it
h
`

=
1
0
,
n

=
3
0
,
d

=
0.

3
,
p

=
0.

7
,

a
n

d
u

m
a
x

=
1
0
.

Q
u
ic
k
e
st
-i
n
c
re
m
e
n
t

Q
u
ic
k
e
st
-t
o
-u

lt
im

a
te

Q
u
ic
k
e
st
-t
o
-t
a
rg
e
t

IM
F

P
2

in
st

a
n
c
e

F
−
f

fl
o
w

ti
m

e
fl
o
w

ti
m

e
fl
o
w

ti
m

e
fi
rs

t
ti

m
e

se
c
o
n
d

ti
m

e

1
5
2

2
8
9
,1

3
1

5
4
.4

4
2
8
9
,1

7
1

5
.9

8
2
8
9
,1

8
5

2
2
.9

8
2
8
8
,9

9
3

5
2
.9

7
2
8
9
,1

6
4

1
6
5
.8

8
2

2
5

2
3
7
,9

3
4

8
.1

8
2
3
7
,9

3
5

2
.6

3
2
3
7
,9

3
7

3
.4

0
2
3
7
,9

1
9

7
.0

3
2
3
7
,9

2
0

2
3
.6

7
3

4
7

3
0
4
,7

6
3

2
0
.0

3
3
0
4
,7

7
9

3
2
.5

9
3
0
4
,7

8
1

6
.7

7
3
0
4
,5

8
6

2
1
.8

0
3
0
4
,7

7
5

8
9
.0

2
4

4
0

2
3
3
,3

9
5

1
0
.8

5
2
3
3
,3

9
4

5
.7

5
2
3
3
,3

9
5

3
.9

1
2
3
3
,3

5
4

1
3
.9

2
2
3
3
,3

6
2

4
9
.6

3
5

2
1

2
5
1
,7

9
7

1
0
.3

3
2
5
1
,8

0
0

4
.5

1
2
5
1
,8

0
1

4
.0

7
2
5
1
,7

6
2

5
.8

3
2
5
1
,7

9
0

2
4
.7

4
6

3
0

2
5
8
,4

5
1

1
2
.9

7
2
5
8
,4

4
8

4
.0

1
2
5
8
,4

4
8

4
.9

9
2
5
8
,3

8
5

2
8
.8

3
2
5
8
,4

5
2

7
5
.2

8
7

3
3

2
4
3
,6

0
6

1
1
.2

2
2
4
3
,6

0
4

4
.2

4
2
4
3
,6

0
4

5
.5

5
2
4
3
,5

3
5

2
1
.5

0
2
4
3
,5

4
2

7
3
.1

6
8

2
3

1
9
5
,4

3
6

5
.0

5
1
9
5
,4

3
1

1
.9

3
1
9
5
,4

3
6

2
.5

4
1
9
5
,1

6
0

1
.1

9
1
9
5
,4

0
6

4
.6

7
9

2
9

2
5
5
,0

9
2

9
.6

1
2
5
5
,0

8
3

4
.2

6
2
5
5
,0

8
6

6
.9

7
2
5
4
,9

7
8

1
3
.2

3
2
5
5
,0

5
3

4
8
.8

5
1
0

5
0

2
8
0
,0

6
3

1
8
.8

9
2
8
0
,0

7
0

5
.6

6
2
8
0
,0

7
8

1
0
.0

4
2
8
0
,0

0
3

2
1
.6

7
2
8
0
,0

7
7

1
2
6
.3

3

1
6
.1

5
7

7
.1

5
6

7
.1

2
2

1
8
.7

9
7

6
8
.1

2
3

22

References

[1] M. Baxter, T. Elgindy, A. Ernst, T. Kalinowski, and M. Savelsbergh. Incremental network design with
shortest paths. European Journal of Operational Research, 238:675–684, 2014.

[2] B. Cavdaroglu, E. Hammel, J.E. Mitchell, T.C. Sharkey, and W.A. Wallace. Integrating restoration
and scheduling decisions for disrupted interdependent infrastructure systems. Annals of Operations
Research, pages 1–16, 2013.

[3] K. Engel, T. Kalinowski, and M.W.P. Savelsbergh. Incremental network design with minimum spanning
trees. arxiv:1306.1926, 2013.

[4] B.J. Kim, W. Kim, and B.H. Song. Sequencing and scheduling highway network expansion using a
discrete network design model. The Annals of Regional Science, 42(3):621–642, 2008.

[5] E.E. Lee, J.E. Mitchell, and W.A. Wallace. Restoration of services in interdependent infrastructure
systems: A network flows approach. IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, 37(6):1303–1317, 2007.

[6] E.E. Lee, J.E. Mitchell, and W.A. Wallace. Network flow approaches for analyzing and managing
disruptions to interdependent infrastructure systems. Wiley handbook of science and technology for
Homeland Security, 2009.

[7] A. Mahmood, M. Aamir, and M.I. Anis. Design and implementation of AMR smart grid system. In
Electric Power Conference, 2008. EPEC 2008. IEEE Canada, pages 1–6. IEEE, 2008.

[8] J.A. Momoh. Smart grid design for efficient and flexible power networks operation and control. In
Power Systems Conference and Exposition, pages 1–8. IEEE, 2009.

[9] S.G. Nurre, B. Cavdaroglu, J.E. Mitchell, T.C. Sharkey, and W.A. Wallace. Restoring infrastructure sys-
tems: An integrated network design and scheduling (INDS) problem. European Journal of Operational
Research, 223(3):794–806, 2012.

[10] S.G. Nurre and T.C. Sharkey. Integrated network design and scheduling problems with parallel identical
machines: Complexity results and dispatching rules. Networks, 63(4):306–326, 2014.

[11] S. V. Ukkusuri and G. Patil. Multi-period transportation network design under demand uncertainty.
Transportation Research Part B: Methodological, 43(6):625–642, 2009.

23

http://arxiv.org/abs/1306.1926

Appendix

Complexity of Incremental Maximum Flow Problem

Theorem 4. The incremental maximum flow problem is NP-hard even when restricted to instances where
every existing arc has capacity 1 and every potential arc has capacity 3.

Proof. We use reduction from the problem Exact Cover by 3-sets (X3C). An instance of X3C is given by
a collection S of 3-element subsets of the set U = {1, 2, . . . , 3n}, and the problem is to decide if there are
n sets S1, . . . , Sn ∈ S such that U = S1 ∪ · · · ∪ Sn. Such an X3C instance can be reduced to the following
IMFP instance. The node set is

N = {s, t} ∪ {vS : S ∈ S} ∪ {w1, . . . , w3n}.

For every S ∈ S, there is a potential arc with capacity 3 from s to vS , and for every i ∈ U there is an existing
arc of capacity 1 from wi to t. Moreover, for every S = {i, j, k} ∈ S there are three existing arcs (vS , wi),
(vS , wj) and (vS , wk) with unit capacities. Clearly the flow in time period k is at most 3 · min{n, k − 1},
hence the objective value is bounded by

3 · [0 + 1 + · · ·+ (n− 1)] + 3n(T − n)

and this upper bound can be achieved if and only if the underlying X3C instance is a YES-instance.

Approximation for the incremental maximum matching problem

In order to derive a performance guarantee for Quickest-to-ultimate on instances of the incremental maximum
matching problem, we strengthen Lemma 2. We need the following auxiliary result.

Lemma 7. For real numbers α1 > α2 > · · · > αn and 0 6 β1 6 β2 6 · · · 6 βn with
∑n
i=1 βi = B, we have

n∑
i=1

αiβi 6
B

n

n∑
i=1

αi.

Proof. By duality,

max

{
n∑
i=1

αixi : xi 6 xi+1 for 1 6 i 6 n− 1,

n∑
i=1

xi = B, xi > 0 for 1 6 i 6 n

}
= min {Bz : yi − yi−1 + z > αi for 1 6 i 6 n, y0 = yn = 0, yi > 0 for 1 6 i 6 n− 1} ,

and a feasible solution for the minimization problem on the RHS is given by z = 1/n
∑n
i=1 αi and

yi = (n− i)z −
n∑

j=i+1

αj for 1 6 i 6 n− 1.

Lemma 8. For the incremental maximum matching problem,

z1 >

{
TF − 1

2cr(r + 1) if f > r,

TF − 1
4 [crF + r(r − f) + 2cr] if f < r.

Proof. Recall that
∑r−1
i=0 λi = cr. Lemmas 2 and 7 yield

z1 > TF −
r∑
i=0

λi(r − i) > TF − cr
r − 1

r∑
i=0

(r − i) = TF − cr
r

(
r2 − 1

2
r(r − 1)

)
= TF − 1

2
cr(r + 1).

24

For the case r > f we define ρ = max{0, d(r − f)/2e}. Note that f + ρ − 1 < f + (r − f)/2 = F/2. This
implies that in the first ρ time periods, there is always a potential arc which is used in the ultimate maximum
matching, and is not adjacent to any arc in the current maximum matching. Hence λi = 0 for 0 6 i 6 ρ− 1.
From Lemma 2 we obtain

z1 > TF −
ρ−1∑
i=0

(r − i)−
r−1∑
i=ρ+1

λi(r − i).

Using Lemma 7 and

r−1∑
i=ρ

λi = cr − ρ, this implies

z1 > TF − rρ+
ρ(ρ− 1)

2
− cr − ρ

r − ρ
r−1∑
i=ρ+1

(r − i)

= TF − rρ+
ρ(ρ− 1)

2
− cr − ρ

r − ρ

[
r(r − ρ)− 1

2
(r − t)(r + t− 1)

]
= TF − rρ+

ρ(ρ− 1)

2
− (cr − ρ)(r − ρ+ 1)

2
.

If ρ = (r − f)/2 then

z1 > TF − 1

2
r(r − f) +

(r − f)(r − f − 2)

8
− (cr − (r − f)/2)(r − (r − f)/2 + 1)

2

= TF − 1

4
[crF + r(r − f) + 2cr)] ,

and if ρ = (r − f)/2 then

z1 > TF − 1

2
r(r − f + 1) +

(r − f + 1)(r − f − 1)

8
− (cr − (r − f + 1)/2)(r − (r − f + 1)/2 + 1)

2

= TF − 1

4
[crF + r(r − f) + cr + r)] .

Now the claim follows from cr > r.

Proposition 1. Quickest-to-ultimate is a 4/3-approximation algorithm for the incremental maximum match-
ing problem.

Proof. We need to show that z∗ − 4
3z1 6 0, and we distinguish two cases.

Case 1. r 6 f , i.e. ρ = 0. Using Lemmas 1 and 8, we obtain

z∗ − 4

3
z1 6 TF −

r∑
j=1

cj 6 TF − r(r − 1)

2
− cr −

4

3

[
TF − cr(r + 1)

2

]
6

2crr

3
− TF

3
.

The required inequality follows from T > cr and F = f + r > 2r.

Case 2. r > f . Lemma 8 implies

z∗ − 4

3
z1 6 TF −

r∑
j=1

cj

6 TF − r(r − 1)

2
− cr −

4

3

[
TF − 1

4
[crF + r(r − f) + 2cr]

]
= −TF

3
− r(r − 1)

2
− cr +

crF

3
+
r(r − f)

3
+

2cr
3
.

25

Using T > cr + 1 and then substituting F = f + r, we obtain

z∗ − 4

3
z1 6 −crF

3
− F

3
− r2

2
+
r

2
− cr +

crF

3
+
r2

3
− rf

3
+

2cr
3

6 −f
3
− r

3
+
r

2
− cr −

rf

3
− cr

3
6
r

6
− cr

3
.

Now the claim follows from cr > r.

26

	1 Introduction
	2 Problem formulation
	3 Heuristics
	3.1 Quickest flow increment
	3.2 Quickest ultimate flow
	3.3 Quickest target flow

	4 The unit capacity case
	4.1 Upper bounds
	4.2 The incremental maximum matching problem

	5 Computational study
	5.1 Instance generation
	5.2 Comparison of the MIP models
	5.3 Heuristics

	6 Final remarks
	26872.pdf
	NOVA

